A Rust-based Runtime for
the Internet of Things

Niklas Adolfsson
@niklasad1
2017-09-30

https://github.com/niklasad1

Who am I?

Niklas Adolfsson

Embedded Software Engineer,
Cybercom

MSc. Computer Science

Software security, embedded systems,
programming languages

What is this talk about?

My experience using Rust to build
Bluetooth Low Energy firmware

What is Internet-of-Things?

15
O J
N l

Internet-of-Things characterics

Low-end devices (low power, low cost)
Battery powered

Microcontroller characteristics:

e 1CPU,tensof MHz

e Tensof kBRAM

e Hundreds of kB Flash

e Lack of Memory Manage Unit (MMU) nRF51-DK

e Equipped with radio chips

Internet-of-Things - Bluetooth Low Energy

Low-end devices, low power
< 100 meters range
Two types of packets:

e Advertisements (31 bytes)
e Data packets (255 bytes)

Host Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PH)

Internet-of-Things characterics - cont'd

Reliability important (limited access)
Security & privacy
Suitable programming languages:

e Low runtime overhead

e Fine-grained memory control

e Deterministic behavior

C/C++ nRF51-DK

Increasing complexity

Need a runtime
loT operating systems:
e Trade-off memory & power over safety

e No memory isolation?

Faulty application - Will this segfault?

Same address space

-~

Application

Kernel

~

Buffer overflow

/

No, it is WORSE than a segfault!!!

Same address space

-~

Application

Ooops

Kernel

~

Undefined behavio

R

/

So, it's not a surprise that loT is insecure

sy
HACKING NEWS

Millions of IoT devices are vulnerable to
buffer overflow attack

By Pentesting Expert - July 19, 2017 @ 25 LW

IEm B

v n

A buffer cverflow flaw has been discoverad by security researchers (on the IoT-focused
security agency Senrio) in an open-scurce software program improvement library that's
extensively utilized by main producers of the Internet-of-Thing devices.

The buffer overflow vulnerability ((®¥SPlsgEF{¥"), which is named "Devil's Ivy” permits a
distant attacker to crash the SOAP (Simple Object Access Protocol) WebServices daeman
and make it doable to execute arbitrary code on the affected devices.

"The affect of Devil's Ivy goes far past Axis. It lies deep within the communication layer, in
an open third-party toolkit known as gSOAP (Simple Object Access Protocol). gSOAP is a
extensively used internet companies toclkit, and builders all over the world use gSOAP as
half of a software program stack to allow devices of every kind to speak to the web.
Software cor gadget producers who depend on gSOAP to assist their companies are
affected by Devil's Ivy, although the extent to which such devices could also be exploited
can't be decided at the moment. Based con our analysis, servers are extra possible to be
exploited. But shoppers could be vulnerable as properly, in the event that they obtain a
SOAP message from a malicious server. "

10

Why Rust?

Memory safety and type-safety
Fine-grained memory control
Low runtime overhead

Reduce the number of vulnerable loT
devices

Why not write an loT OS in Rust?:)

11

Tock

loT operating system
Reliability and Security
Research project

ARM-Cortex M Microcontrollers

12

Tock - Architecture

; grant T grant
Memory Isolation Nss &
@
Rl | i
User-space processes 2 3 || _heap RAM ||| heap
S8 || _stack stack A':;g‘;gf;e
: : > |7 T
({4 _ ”. D_ [= EEEm M
Microkernel-isch” | [Gata emory
Flash
P Core kernel g g
e Capsules (relies on =|<|Ell 2|2l 2| [capsues
D= will- = = (Untrusted)
type-system not separate % 7] 1S)LF
1
x S—

processes) mm | Core kernel

Figure from www.tockos.org

13

http://www.tockos.org

nRF51-DK

NnRF51, ARM cortex MO
16 MHz CPU,

32kB RAM

256kB Flash

Radio 2.4GHz (Bluetooth Low
Energy)

AES, TRNG, Temperature Sensor

-6 €
.
AR

%

_‘5: . <
x:ﬁ*@“

14

What have we done?

[

Packet

[TockOS I Encrypt Temperature & Random bytes]

(

{

Temperature .
Sensor] [AES encryption]
nRF51
TRNG] [Radio

J

((I)) —

15

Bluetooth Low Energy - Driver

User-space Process

BLE Capsules

main program]

ELE HIL

h 4

/— BLE library \\

BLE Radio
[ble_adv_data [ble_adv_start
[ble_adv_clear_data [ble_adv_scan
[b!e adv_set txpower [ble_adv_stop
[b!e adv_setl_interval [ble_adv_set_address

- | J/

System Call

User-space process in C

#include <stdio.h>
#include <ble.h>

/*
* BLE Demo Application
* 1. Configures transmitting power, advertisement interval & advertisement address
* 2. Configures advertisement data
* 3. Start advertisment and run forever
*/

int main(void)

{
unsigned char name[]
unsigned char addr[]

"Tock0S";
{0x1, Ox2, Ox3, Ox4, Ox5, Ox6};

ble_adv_set_txpower (ODBM);

ble adv_set_interval(TEN_MS);

ble_adv_set_address(addr, sizeof(addr));
ble_adv_data(BLE_HS_ADV_TYPE_COMP_NAME, name, sizeof(name) - 1);
ble_adv_start(CONN_NON);

return 0;

Bluetooth Low Energy - Capsule

User-space Process

BLE Capsule

main program]

ELE HIL

h 4

/— BLE library \\

BLE Radio
[ble_adv_data [ble_adv_start
[ble_adv_clear_data [ble_adv_scan
[b!e adv_set txpower [ble_adv_stop
[bie adv_setl_interval [ble_adv_set_address

- | J/

System Call

BLE Capsule - Configure advertisement data

fn set_adv_data(&self, ad_type: usize) -> ReturnCode {
let mut return_code = ReturnCode::ESIZE;
for cntr in self.app.iter() {
cntr.enter(|app, _| {
app.app_write.as_ref().map(|slice| {
let len = slice.len();
// Each AD TYP consists of TYPE (1 byte), LENGTH (1 byte) and
// PAYLOAD (@ - 31 bytes)
// This is why we add 2 to start the payload at the correct position.
let i self.offset.get() + len + 2;
if i <= 31 {
self.kernel_tx.take().map(|data| {
for (out, inp) in data.iter_mut().zip(slice.as_ref()[0..1len].iter()) {
*out = *inp;

}
let tmp = self.radio
.set_advertisement_data(ad_type, data, len, self.offset.get() + 8);
self.kernel_tx.replace(tmp);
self.offset.set(i);
return_code = ReturnCode: :SUCCESS;
1)

1)
1)
}

return_code

19

Bluetooth Low Energy - Hardware Module

User-space Process
[main program]

h 4

p

h

BLE library

ble_adv_data

[ble_adv_start

ble_adv_clear_data

[ble_adv_scan

ble_adv_set txpower

[ble_adv_stop

[
[
[
[

ble_adv_sel_interval

[ble_adv_set_address

Tock Kernel

BLE Capsules

]

System Call

-

ELE HIL

BLE Radio

Hardware

20

BLE Radio (hardware module)

pub struct Radio {
// pointer to struct of memory mapped I/0
regs: *const peripheral_registers::RADIO_REGS,

fn radio_on(&self) {
// deference and write to raw memory
let regs = unsafe { &*self.regs };
// reset and enable power
regs.POWER.set(0);
regs.POWER.set(1);

21

Benchmarks

Evaluate our drivers

Comparison with state-of-the-art loT operating systems:

e Apache mynewt
e ARM mbed
o Zephyr

22

BLE power consumption

10 seconds advertisement
Advertisement configuration:

e 150 msinterval
e Transmitting power O
dBm

e Payloadsize 22 bytes

The bars illustrates different
power consumption

Turning off power hungry
peripherals

Average Power Consumption (uw)

20.0

17.5 +

15.0 A

12.5 A

10.0

7.5

5.0

2.5

0.0 -

Average Power Consumption (uW)

mm idle power consumption
I Radio power consumption
e Total power consumption

13.21

114 107 =

mbed mynewt Tock
Operating System

14.55

23

This sounds great right, but how
has the journey been?

Fail pick yourself up and fail
again.

- Charlie Day

Learning an Operating System with limited
documentation is hard

How do the system calls work?
How to pass a buffer to the kernel?
How to use raw bytes in the kernel? (nested closures)

IRC-channel a big help

26

No debugging symbols

000000dc

dc: e92d 4710 stmdb sp!, {r4, r5, r6, r7, r8, ro9,
sl, 1r}

eo: 241 3804 Movw r8, #4868 ; 0x1304

e4: 4682 mov sl, ro

e6: f44f 3080 mov .w re, #65536 ; 9x10000

ea: 2700 movs r7, #0

ec: f2c4 0801 movt r8, #16385 ; 9x4001

fo: £8c8 0004 str.w ro, [r8, #4]

f4: £8d8 9200 1dr.w r9, [r8, #512] ; 9x200

27

No printouts

LI helena-project / tock ® Unwatch~ 43

Code Issues 33 I Pull requests 12 Projects 4 Wiki Insights ~
Issue: not possible to print messages with panic.
frenicth wants to merge 10 commits into helena-project:master from frenicth:nrf51i/panic_fix

(& Conversation 11 -O- Commits 10 Files changed 2

frenicth commented on Feb 21 Contributor

Panic for NRF51DK was missing feature to print panic messages. Implemented the panic message in a
similar way as for the other boards.

—h
w

Issue: not possible to print messages with panic. Solution: v
implement..

Q

(0]

% Unstar 532 ¥ Fork 65

Edit
+56 —29 HHENE
Reviewers
a ppannuto (1
@ brghena v
Assignees

No one—assign yourself

28

What it is my experience using Rust?

Learning curve is rather steep (ownership paradigm, interior
mutability, etc)

The compiler is your friend and educates you to write good code
Made me a better programmer
Crashes happens very rarely (don’t do unwrap on Options)

Rust IRC-channels are very useful (keep it up)

29

What | want to see in the future

Rust in safety critical applications (medical devices, autonomous
vehicles and etc)

Convince embedded community to adopt Rust (C++ has been
struggled with this as well)

Full-fledged IDEs with integrated debugger

30

Thanks for your attention

Contribute to Tock:

Buy a hail board, https://www.tockos.org/hardware/hail
Buy nRF51-DK, nRF52-DK

Port a new processor (e.g STM chip)
https://github.com/helena-project/tock

Slides inspired by:

Amit Levy, Fredrik Nilsson, Alejandro Russo and many others

31

https://www.tockos.org/hardware/hail
https://github.com/helena-project/tock

