
A Rust-based Runtime for
the Internet of Things

Niklas Adolfsson
@niklasad1
2017-09-30

https://github.com/niklasad1

Who am I?

Niklas Adolfsson

Embedded Software Engineer,

Cybercom

MSc. Computer Science

Software security, embedded systems,

programming languages

1

What is this talk about?

My experience using Rust to build
Bluetooth Low Energy firmware

2

What is Internet-of-Things?

3

Internet-of-Things characterics

Low-end devices (low power, low cost)

Battery powered

Microcontroller characteristics:

● 1 CPU, tens of MHz

● Tens of kB RAM

● Hundreds of kB Flash

● Lack of Memory Manage Unit (MMU)

● Equipped with radio chips

4

nRF51-DK

Internet-of-Things - Bluetooth Low Energy

Low-end devices, low power

< 100 meters range

Two types of packets:

● Advertisements (31 bytes)

● Data packets (255 bytes)

5

Physical Layer (PH)

Link Layer (LL)

Host Controller Interface (HCI)

L2CAP

SM ATT

GAP GATT

Application

Internet-of-Things characterics - cont’d

Reliability important (limited access)

Security & privacy

Suitable programming languages:

● Low runtime overhead

● Fine-grained memory control

● Deterministic behavior

C/C++

6

nRF51-DK

Increasing complexity

Need a runtime

IoT operating systems:

● Trade-off memory & power over safety

● No memory isolation?

7

Faulty application - Will this segfault?

8

Application

Same address space Kernel

Buffer overflow

No, it is WORSE than a segfault!!!

9

 Application

Same address space Kernel

Undefined behaviorOoops

So, it’s not a surprise that IoT is insecure

10

Why Rust?

Memory safety and type-safety

Fine-grained memory control

Low runtime overhead

Reduce the number of vulnerable IoT

devices

Why not write an IoT OS in Rust? :)

11

Tock

IoT operating system

Reliability and Security

Research project

ARM-Cortex M Microcontrollers

12

Tock - Architecture

Memory Isolation

User-space processes

“Microkernel-isch”:

● Core kernel

● Capsules (relies on

type-system not separate

processes)

 13

Figure from www.tockos.org

http://www.tockos.org

nRF51, ARM cortex M0

16 MHz CPU,

32kB RAM

256kB Flash

Radio 2.4GHz (Bluetooth Low

Energy)

AES, TRNG, Temperature Sensor

nRF51-DK

14

What have we done?

15

nRF51

Temperature
Sensor

AES encryption

TRNG Radio

Packet

TockOS Encrypt Temperature & Random bytes

Bluetooth Low Energy - Driver

16

User-space process in C

#include <stdio.h>

#include <ble.h>

/*

 * BLE Demo Application

 * 1. Configures transmitting power, advertisement interval & advertisement address

 * 2. Configures advertisement data

 * 3. Start advertisment and run forever

 */

int main(void)

{

 unsigned char name[] = "TockOS";

 unsigned char addr[] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6};

 ble_adv_set_txpower(ODBM);

 ble_adv_set_interval(TEN_MS);

 ble_adv_set_address(addr, sizeof(addr));

 ble_adv_data(BLE_HS_ADV_TYPE_COMP_NAME, name, sizeof(name) - 1);

 ble_adv_start(CONN_NON);

 return 0;

}

17

Bluetooth Low Energy - Capsule

18

 BLE Capsule

BLE Capsule - Configure advertisement data

 fn set_adv_data(&self, ad_type: usize) -> ReturnCode {

 let mut return_code = ReturnCode::ESIZE;

for cntr in self.app.iter() {

 cntr.enter(|app, _| {

 app.app_write.as_ref().map(|slice| {

 let len = slice.len();

 // Each AD TYP consists of TYPE (1 byte), LENGTH (1 byte) and

 // PAYLOAD (0 - 31 bytes)

 // This is why we add 2 to start the payload at the correct position.

 let i = self.offset.get() + len + 2;

 if i <= 31 {

 self.kernel_tx.take().map(|data| {

 for (out, inp) in data.iter_mut().zip(slice.as_ref()[0..len].iter()) {

 *out = *inp;

 }

 let tmp = self.radio

 .set_advertisement_data(ad_type, data, len, self.offset.get() + 8);

 self.kernel_tx.replace(tmp);

 self.offset.set(i);

 return_code = ReturnCode::SUCCESS;

 });

 }

 });

 });

 }

 return_code

}

19

Bluetooth Low Energy - Hardware Module

20

 BLE Radio

BLE Radio (hardware module)

pub struct Radio {

 // pointer to struct of memory mapped I/O

 regs: *const peripheral_registers::RADIO_REGS,

}

fn radio_on(&self) {

// deference and write to raw memory

let regs = unsafe { &*self.regs };

 // reset and enable power

 regs.POWER.set(0);

 regs.POWER.set(1);

 }

21

Benchmarks

Evaluate our drivers

Comparison with state-of-the-art IoT operating systems:

● Apache mynewt

● ARM mbed

● Zephyr

22

10 seconds advertisement

Advertisement configuration:

● 150 ms interval

● Transmitting power 0

dBm

● Payload size 22 bytes

The bars illustrates different

power consumption

Turning off power hungry

peripherals

BLE power consumption

23

This sounds great right, but how
has the journey been?

24

25

Fail pick yourself up and fail
again.

- Charlie Day

Learning an Operating System with limited
documentation is hard

How do the system calls work?

How to pass a buffer to the kernel?

How to use raw bytes in the kernel? (nested closures)

IRC-channel a big help

26

No debugging symbols

000000dc

 dc: e92d 47f0 stmdb sp!, {r4, r5, r6, r7, r8, r9,

sl, lr}

 e0: f241 3804 movw r8, #4868 ; 0x1304

 e4: 4682 mov sl, r0

 e6: f44f 3080 mov.w r0, #65536 ; 0x10000

 ea: 2700 movs r7, #0

 ec: f2c4 0801 movt r8, #16385 ; 0x4001

 f0: f8c8 0004 str.w r0, [r8, #4]

 f4: f8d8 9200 ldr.w r9, [r8, #512] ; 0x200

27

28

No printouts

What it is my experience using Rust?

Learning curve is rather steep (ownership paradigm, interior

mutability, etc)

The compiler is your friend and educates you to write good code

Made me a better programmer

Crashes happens very rarely (don’t do unwrap on Options)

Rust IRC-channels are very useful (keep it up)

29

What I want to see in the future

Rust in safety critical applications (medical devices, autonomous

vehicles and etc)

Convince embedded community to adopt Rust (C++ has been

struggled with this as well)

Full-fledged IDEs with integrated debugger

30

Thanks for your attention

Slides inspired by:

Amit Levy, Fredrik Nilsson, Alejandro Russo and many others

31

Contribute to Tock:

● Buy a hail board, https://www.tockos.org/hardware/hail

● Buy nRF51-DK, nRF52-DK

● Port a new processor (e.g STM chip)

● https://github.com/helena-project/tock

https://www.tockos.org/hardware/hail
https://github.com/helena-project/tock

